BIOLOGY

9700/52
Paper 5 Planning, Analysis and Evaluation
May/June 2017
MARK SCHEME
Maximum Mark: 30

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Mark scheme abbreviations

\(\left.$$
\begin{array}{ll}\text {; } & \begin{array}{l}\text { separates marking points } \\
\text { R }\end{array}
$$

alternative answers for the same point\end{array}\right]\)| R | reject |
| :--- | :--- |

Question	Answer	Marks	Guidance
1(a)	independent variable: concentration of caffeine ; dependent variable: number of (heart) beats per unit time / heart rate ;	2	
1(b)(i)	use two tablets ; add $1 \mathrm{dm}^{3}$ or $1000 \mathrm{ml} / \mathrm{cm}^{3}$ or 1 litre (distilled) water ;	2	A any correct proportions of water and tablets whatever the total volume, e.g. one tablet in $500 \mathrm{~cm}^{3} / 0.5 \mathrm{dm}^{3}$ water
1(b)(ii)	to keep it in one position / to stop it from moving / swimming (to make it easier to count the heart beat) ;	1	
1(b)(iii)	max 6 of: 1 ref. to a method of diluting $100 \mathrm{mg} \mathrm{dm}^{-3}$ caffeine solution, e.g. proportional / simple / serial dilution or a description and minimum of 4 additional dilutions ; 2 ref. to concentrations from $100 \mathrm{mg} \mathrm{dm}^{-3}$ downwards with correct units; values stated must correspond to the dilution method chosen 3 use of water $/ 0 \mathrm{mg} \mathrm{dm}^{-3}$ as a control ; 4 allow Daphnia to acclimatise after adding caffeine / to absorb the caffeine ; 5 ref. to method of counting number of heart beats, e.g. clicker counter / tally counter / record dots on paper and count / video ; 6 use of same period of time (for counting ; 7 same volume / same number of drops of caffeine solution added to each slide ; if a value stated must be max $1 \mathrm{~cm}^{3}$ or 5 drops	6	proportional/simple: (100), 80, 60, 40, 20, (0) $\mathrm{mg} \mathrm{dm}^{-3}$ serial: (100), 50, 25, 12.5, $6.25 /(100), 10,1,0.1$, $0.01 \mathrm{mgdm}^{-3}$ must have a minimum of 3 others between 0.0 and $100.0 \mathrm{mg} \mathrm{dm}^{-3}$ standardising variables (mp6-mp8) - must be clear that all the concentrations have been tested or one concentration has been tested more than once on Daphnia

Question	Answer		Marks	Guidance
	8 use the same organism / same size / same length / same age / same species / same type Daphnia for all caffeine concentrations; 9 ref. to a minimum of three replicates and calculate a mean or identify / eliminate / remove / ignore anomalies or outliers; 10 description of ethical treatment of live Daphnia AW, e.g. careful handling (when being moved) to minimise damage / return to tank promptly after testing / minimum time in caffeine solution ; 11 low risk experiment/suitable hazard and safety precaution, e.g. allergy to caffeine and gloves;			
1(b)(iv)	source of error is max 1 and must be clearly stated improvement is max 1 and must match the source of error		2	A any other valid source of error and a suitable improvement I ref. to magnification used
	error heat from light in microscope ;	improvement		
		turn lamp on only when needed / heat shield;		
	evaporation of water from slide ;	use a cover slip / top up with same solution ;		
	animals are stressed;	handle only when needed / minimise time in experimental conditions ;		
	cumulative effect of caffeine (on one Daphnia) ;	allow recovery time / use different Daphnia;		
	difficulty in counting ;	any suitable improvement, e.g. video and slow down ;		
	no time allowed for caffeine absorption ;	have a time delay before counting;		
	drop size varies ;	use a known volume of caffeine solution ;		

Question	Answer	Marks	Guidance
1(c)	Daphnia belong to a different phylum / data collected was not from humans ;	1	A any ref. to differences in heart structure of humans and Daphnia
1(d)(i)	(2.4 mg $100 \mathrm{~cm}^{-3}$ cola, trial 3) $\underline{228}$;	1	
1(d)(ii)	max 2 of: range of concentration too narrow ; no data for caffeine at $0.0 /$ below 2.4 / above $6.0 \mathrm{mgcm}^{-3}$; not enough concentration / only 4 concentrations; there is overlap between some of data collected for 4.8 and 6.0 mg cm^{-3}; idea that proportional increases in concentration should give a proportional increase in heart rate ;	2	

Question	Answer	Marks	Guidance
2(b)(ii)	$\begin{aligned} & r_{s}-1-\frac{(6 \times 14)}{\left(9^{3}-9\right)} ; \\ & r_{s}-1-\frac{(84)}{(720)} \\ & r_{s}=\underline{0.88} ; \end{aligned}$	2	max 1 if correct answer is given to more than 2 d.p.
2(b)(iii)	calculated value $/ \underline{0.88}$, is greater than, the critical value $/ \underline{0.68}$ or critical value $/ \underline{0.68}$, is less than, the calculated value $/ \underline{0.88 \text {; }}$	1	ecf from incorrect answer in 2(b)(ii)
2(b)(iv)	max 1 of: idea that cyanogenic plants grow better at higher temperature; idea that cyanogenic plants more able to survive grazing (by herbivores) ; idea that cyanogenic plants produce more hydrogen cyanide which, reduces grazing / kills (more), herbivores ;	1	must be comparative

Question	Answer	Marks	Guidance
3(a)	max 3 of: same location / area used ; same time of year / same two weeks in August ; traps were equally spaced (along the transect) ; along same transects / transects were at the same places; numbers calculated per 1000 traps / same number of traps were used;	3	I species of vole
3(b)	$1 \quad q^{2}=0.16$ or $\frac{8}{50}$ or $\frac{4}{25}$ or 16% OR $q=0.4$ or $\frac{2}{5}$ or 4%; 2 derives $2 p q$ correctly from a clearly stated value of p and a clearly stated value of q; 3 in 1997 heterozygous voles $=(0.48 \times 60)=29$ voles;	3	max 2 if answer not rounded or p is incorrect \boldsymbol{A} answers in equation as percentages 2 ecf if q is incorrect (e.g. $q=0.16$) but then correctly used to get $2 p q$ 3 ecf (any number) $\times 60$ (from graph) and a whole number rounded correctly

